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SUMMARY

The Godunov-projection method is implemented on a system of overlapping structured grids for solving
the time-dependent incompressible Navier–Stokes equations. This projection method uses a second-order
fractional step scheme in which the momentum equation is solved to obtain the intermediate velocity
�eld which is then projected on to the space of divergence-free vector �elds. The Godunov procedure
is applied to estimate the non-linear convective term in order to provide a robust discretization of
this terms at high Reynolds number. In order to obtain the pressure �eld, a separate procedure is
applied in this modi�ed Godunov-projection method, where the pressure Poisson equation is solved.
Overlapping grids are used to discretize the �ow domain, as they o�er the �exibility of simplifying
the grid generation around complex geometrical domains. This combination of projection method and
overlapping grid is also parallelized and reasonable parallel e�ciency is achieved. Numerical results are
presented to demonstrate the performance of this combination of the Godunov-projection method and
the overlapping grid. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The primary motivation for this study stems from the need to develop suitable numerical
methods for solving the unsteady incompressible Navier–Stokes (INS) equations to model
the hydrodynamic environment and to estimate the hydrodynamic forces for the control and
navigation of underwater robotic vehicles (URVs), which are routinely being used for under-
water applications. A number of researchers such as Yuh [1], Kalske [2] and Fossen [3] have
contributed towards the estimation of forces acting on the URVs by basing their predictions
on potential �ow theory which is a simpli�ed linear model for hydrodynamic �ows. The
hydrodynamic forces acting on the vehicle were divided arti�cially into several parts that can
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be modelled individually by using empirical formulae based on a combination of experimental
data and linear model results. In this work, it is proposed that numerical methods for solving
INS be used to simulate the �ow �eld around the underwater rigid bodies and hydrodynamic
forces acting on the body are estimated by integrating the pressure and viscous forces along
the body’s surface.
It is reasonable to assume that the �uid around the underwater vehicle is incompressible

and the vehicle is a rigid body. The main computational di�culty for simulating the incom-
pressible �ow by using the numerical method arises from the fact that the continuity equation
contains only velocity components and there is no obvious link with the pressure as in the case
of compressible �ow, where the density carries on the link. One method, which is the focus of
the current investigation for solving these equations, is the second-order Godunov-projection
method introduced by Bell et al. [4; 5] and developed by Bell et al. [6] and Almgren
et al. [7]. In this projection method, a structured grid is used to discretize the �ow do-
main in the physical space, which can be transformed to the computational space, which is
a unit square in two-dimensional space or a unit cube in three-dimensional space through a
mapping � given by �= @(x; y; z)=@(�; �; �), where (x; y; z) stands for the co-ordinates of the
physical space and (�; �; �) denotes the co-ordinates of the computational space. The unsteady
incompressible Navier–Stokes equations in the generalized curvilinear co-ordinate system are
de�ned as follows:

∇� · �U=0 (1)

Ut +
1
J
( �U · ∇�)U=

�
J
∇� ·

[
1
J
TT t∇� ·U

]
− 1

J
T t ∇��

�
(2)

where J =det|�|; T= J�−1 and �U=TU, � is the kinematic viscosity, U represents the
velocity �eld and � is the pressure.
This projection method contains fractional time steps and is carried out in several steps.

First, momentum equation (2) is solved with a lagged pressure term to determine the inter-
mediate velocity �eld, which does not satisfy continuity equation (1). Then, the intermediate
velocity �eld is decomposed into divergence-free and curl-free components which are the new
velocity �eld and the update for the pressure, respectively. The Godunov procedure is incor-
porated to di�erentiate the convective term in order to provide a robust discretization scheme
so that the restriction of cell Reynolds number can be overcomed.
In order to simplify the grid generation task for complex �ow domains that are common for

the underwater applications, a system of overlapping grids is used to discretize the computa-
tional domain. The overlapping grid system consists of several component grids that overlap
each other and the union of the component grids covers the whole region over which the
computation is carried out. Each component grid can be generated separately and has its own
mapping function. The bene�ts of using an overlapping system of grids are many in that it
facilitates a smooth transformation for each component grid, simpli�es the task of grid gen-
eration in complex geometric domains and reduces the computational overhead for solving
moving boundary problems, which will be addressed in another paper. The methodology for
generating the overlapping grids for the computations reported in this work follows closely
the method outlined in Reference [8].
In this paper, the Godunov-projection method is implemented on a system of overlapping

grids to simulate the unsteady incompressible �ows. In order to reduce the computational
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COMPUTATION OF VISCOUS INCOMPRESSIBLE FLOW 443

costs for solving the three-dimensional problems, parallel computation is employed so that
the computational power of modern high-performance computer can be used e�ciently to
overcome the computational overheads associated with the simulation.
In the subsequent sections of this paper, details of the Godunov-projection method are pre-

sented to cover the procedures for temporal discretization, spatial discretization and projection.
This is then followed by a brief outline of the implementation of the algorithm on a system of
overlapping structured grids and the parallelization strategies adopted are introduced. Selected
numerical simulations of a number of two- and three-dimensional problems are then presented
and discussed.

2. GODUNOV-PROJECTION METHOD

The Godunov-projection method of Bell et al. [4] applies high-order upwind schemes to
provide a robust di�erencing scheme for the convective terms in the INS equations. The
Godunov procedure, which was introduced for gas dynamics by Colella [9], is incorporated
in this method.
The implementation of this algorithm is carried out in three steps. In the �rst step, the

second-order Godunov method is used to approximate the conservative di�erences of the non-
linear convective terms 1=J ( �U · ∇�)U. In the second step, the intermediate velocity �eld is
obtained by solving momentum equation (2) alone and by omitting the solenoidal nature of the
velocity �eld. Finally, an approximate projection is performed to restore the divergence-free
velocity �eld, which satis�es Equation (1) approximately, and subsequently the hydrodynamic
pressure is also updated. These steps are outlined brie�y below.

2.1. Temporal discretization

The second-order fractional step formulation described in Reference [5] is used for temporal
discretization. A vector �eld V can be uniquely decomposed into a divergence-free component
and a gradient of a scalar �eld as follows:

V=Vd +∇ (3)

where Vd is a divergence-free vector �eld and  is a scalar. Hence, a projection operator
P can be de�ned as PV=Vd and ∇ =(I − P)V. By using this projection, Navier–Stokes
equations (1) and (2) can be written as follows:

Ut =P
(

�
J
∇� ·

[
1
J
TT t∇� ·U

]
− 1

J
( �U · ∇�)U

)
(4)

By applying the Crank–Nicholson scheme for temporal discretization, Equation (4) takes the
following discretized form:

Un+1 −Un

�t
=P
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In view of the non-local behaviour of the projection, the linear algebra problem associated
with solving this equation would be very costly. As an economic alternative, a fractional step
method can be applied where lagged pressure �eld is used for the computation. An interme-
diate velocity �eld U∗ is computed by solving the momentum equation along with lagged
pressure and then the projection is applied on the intermediate velocity �eld for obtaining the
divergence-free velocity �eld Un+1 and update of the pressure �eld. A number of forms for
projection exist and according to the analysis carried out by Rider [10], the pressure form of
projection is the most robust as there is no accumulation of the error associated with the no
divergence assumption. In view of this, the intermediate velocity �eld is computed by solving
the following equation and subsequently corrected by the gradient of pressure:

�t−1(Û ∗; n+1 −Un) =
1
2
J−1�∇� · [J−1TT t∇� · (Û ∗; n+1 +Un)]

−J−1[( �U · ∇�)U ]n+1=2 − J−1T t
(∇��

�

)n−1=2
(6)

then

U ∗; n+1 = Û ∗; n+1 +�tJ−1T t
(∇��

�

)n−1=2
(7)

Next a projection is applied for decomposing the vector �eld into a divergence-free
component and a curl-free component so as to obtain a new velocity �eld Un+1 and to
update the pressure gradient J−1T t(∇��=�)n+1=2.

2.2. Spatial discretization

The spatial discretization of momentum equation (2) is based on a cell-centred approximation
since this arrangement provides the most natural way for implementing the Godunov method.
The di�usion term can be discretized by using the standard second-order central di�erence in
the computational space and the non-linear convective term is discretized by the second-order
Godunov method in this method in order to provide the robust approximation.
Figure 1 shows a schematic of a three-dimensional grid with the co-ordinate indices de�ning

cell centres and cell faces. In order to compute the �ux on the faces of a cell, the velocity on
the faces is extrapolated from the values computed at the cell centres. Since this method is
also second-order accurate in time direction, the �ow variables are extrapolated both in space
and time, where the Taylor series expansion is used. After combining the derivative in the
normal direction, the following equations are used to do the extrapolation of the velocity U
on the faces (i + 1

2 ; j; k)

Un+1=2; L
i+1=2 =U+

[
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2

− �t
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2J
(
�vU� + �wU�

)

+�
[
�t
2J

∇�

(
1
J
TT t∇� ·U

)]
− �t
2J

T t ∇��
�

(8)
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Figure 1. Location of cell- and face-centred variables.
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where U=Un
i; j; k and U

n+1=2
i+1=2 =U

n+1=2
i+1=2; j; k , etc. are implied by the subscript indices. A slope

limiter, such as superbee and minmod limiter, can be used to estimate the gradient of the
�ow variables in the cell in each co-ordinate direction. The variable has two values, one of
which is extrapolated from left cell and the other from the right cell. The extrapolation is
handled by using a Riemann solver, where an upwind averaging is applied. It is also possible
to employ an approximate Riemann solver presented in Reference [11]. It should be noted
that the pressure terms appearing in Equations (8) and (9) are not used in this extrapolation
in view of the weak instability which had been observed by Lai et al. [12] if lagged pressure
terms and if the CFL number is greater than 0.5. Hence the marker-and-cell (MAC) projection
method is used so that the resulting velocity �eld on the staggered grid is divergence-free.
The convective terms are discretized as follows:

(
1
J
[( �U · ∇�)U]

)n+1=2
≈ ( �ui+1=2 + �ui−1=2)

2J
(Ui+1=2 −Ui−1=2)
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2J
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��

+
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2J
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��
(10)

where the superscript n + 1=2 has been omitted from the terms in the RHS of the equation
for convenience.
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Figure 2. The four decoupled grids for a two-dimensional grid.

2.3. Projection

The �nal step of this projection algorithm decomposes the vector �eld into a divergence-free
component and a gradient of scalar quantity. The projection is de�ned by the divergence
operator D and gradient operator G as in References [13; 5], which satisfy the property:

(DV;  )s =−(V; G )v (11)

where the terms (·; ·)s and (·; ·)v represent the appropriate inner products on the discrete spaces
of scalars and vectors, respectively. This condition guarantees that the numerical projection is
orthogonal. Exact discrete projection utilizes the central di�erence for both D and G operator
and the discrete Laplacian operator derived decouples the grid [14] as shown in Figure 2,
where a two-dimensional grid is decoupled into four distinct subgrids. Almgren et al. [7]
introduced an approximate projection, which kept the same discrete form of the Poisson
equation so that it could exploit the advantage of the fast solvers. However, the resulting
divergence-free component is not really divergence-free even though its divergence is of the
order O(h2) as reported in Almgren et al. [7].
Since the pressure form of projection is used in this work, U∗; n+1 is projected to extract

the following linear system:

Lst =D
(
U∗; n+1

�t

)
(12)

where Lst represents the standard di�erence Laplacian operator and the equations used to
compute the new velocity �eld and the gradient of pressure are as follows:

Un+1

�t
=
U∗; n+1

�t
−G (13)

1
J
T t ∇��n+1=2

�
=G (14)
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2.4. Estimation of pressure �eld

It is important to estimate the pressure �eld from the velocity �eld so that forces induced by
�uid �ow can be estimated. It is noted that as the pressure at half time step is computed in
the numerical scheme outlined in the previous sections, the pressure at each time level is not
available. Hence, a separate procedure is incorporated into the algorithm to obtain the pressure
�eld after computing the velocity �eld. The pressure Poisson equation which is obtained by
taking the divergence on both sides of momentum equation (2) and also by considering the
satisfaction of the divergence-free property of the velocity �eld as shown below

∇ · (∇�)
�

=−∇(U · ∇)U+∇ · F (15)

is solved in this procedure to obtain the pressure �eld.

3. OVERLAPPING GRID

A system of overlapping grids is used to simplify the grid generation task for geometrically
complicated �ow domains. Even though the geometry of the test cases considered in this
work are relatively simple, the aim of this work is to demonstrate the implementation of
the algorithm on overlapping grids and to gain con�dence before applying this method to
more complex geometries. The overlapping grid consists of several component grids, which
overlap each other. Since it is not required to match on the interior boundaries between the
component grids, the grid generation can be more �exible so that the cost for constructing the
structured grid for complex �ow simulation problems can be greatly reduced. However, the
overlap region between the component grids must be large enough so that the �ow information
can be transferred between component grids correctly. Chesshire and Henshaw [8] described
a method for generating such overlapping grids and a procedure for determining interpolation
coe�cients to enable �ow variable transfer and interpolation. The grid generator, Ogen [15],
is used to generate the overlapping grids in this work. The internal boundary of component
grid consists of the interpolation cells whose �ow variable values should be extracted from
other component grids with which it overlaps.
For overlapping grids, each component grid has its own mapping function �. Hence,

Equations (1) and (2) can be set up on each component grid and the Godunov-projection
algorithm outlined here can be applied on each component grid provided the values on the
interior boundary are known. Hence, the �ow �elds on the component grids are coupled to
the �ow variables on the interior boundary cells. In this work, a high-order interpolation is
used to compute the �ow variables on the interior boundary cells. According to Chesshire and
Henshaw [8], a third-order interpolation is required in order to retain the overall second-order
accuracy of the Godunov-projection method and the incompressible Navier–Stokes equations.
Figure 3 shows the method for interpolating on a set of two two-dimensional overlapping

grids, where the interpolation is performed in the computational space. The interpolation cell of
grid B, which is labelled by the plus symbol, is identi�ed during the phase of grid generation.
Its co-ordinates in the physical space, (x; y)i; j, are mapped into the computational space of grid
A as (�; �)i; j. Hence, the location of its interpolation stencil can be easily determined since
the grid in the unit computational space is uniformly distributed. The interpolation stencil is
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Figure 3. Interpolation stencil.

denoted by the indices of the central cell of the stencil (ls; ms). Then, the interpolation of
variables can be estimated using the following equation:

vB(i; j) =
1∑

l=−1

1∑
m=−1

�l;m; i; jvA(ls+l;ms+m) (16)

where vB(i; j) is the variable at the interpolation cell and the vA(ls+l;ms+m) are the values at the
cells belonging to the interpolation stencil as shown in Figure 3. The interpolation weight,
�l;m; i; j, is computed from the co-ordinates (�; �)i; j by using the bi-quadratic interpolation.
Similar interpolation method is employed for the computations on the three-dimensional over-
lapping grids.
The Godunov-projection method is applied on the overlapping grid by employing the orig-

inal di�erence method on every component grid and using the interpolation equation on the
interior boundary cells. The resulting system of linear equations from all the cells of the
overlapping grid must be solved together in the construction of the evolving numerical �ow
�eld.

4. PARALLEL COMPUTATION

In order to overcome the computational overhead of the three-dimensional numerical �ow
simulations, a combination of the Godunov-projection method and the overlapping grid is
parallelized. Generally, the parallelization is accomplished by partitioning the computational
domain and distributing the partitioned sub-domains among the processors. In this work, the
partition is achieved by partitioning the overlapping grids ensuring good load balancing. Each
component grid is partitioned individually into a number of parts and distributed among the
processors. Therefore, each processor has a collection of grid partitions that belong to di�erent
component grids. Each component grid is partitioned in a scalable manner where the grid is
divided as equally as possible and the interface between grid partitions is minimized so that
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Figure 4. Grid partitioning of a component grid for scalability and load balancing. Total number of
partitions is L×M ×N , which should equal the number of processors.

Figure 5. The structure of master/worker program model.

the amount of data exchange during the computation is minimized as well and the e�ciency
of the parallel algorithm can be enhanced. In this work, a boxwise partition is employed to
partition the component grid as shown in Figure 4, where the component grid can be divided
in all three co-ordinate directions and the number of the grid partition is equal to the number
of the employed processors.
In order to make the current algorithm portable, a message passing standard, MPI [16], has

been used to implement the numerical simulation algorithm on a 64 processor SGI Origin
2000 High Performance Computing (HPC) System to perform the message passing among
the di�erent processors which process the partitioned computational domain. The master/slave
model shown in Figure 5 has been used as the model for implementing the algorithm in parallel
by exploiting the scalable parallel computer architecture of the SGI Origin 2000 HPC Platform,
where one processor (master) controls the execution of the overall computation including I/O
and other processors (slaves) execute the �ow computation on their partitioned computational
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domain simultaneously. Basically, the slaves run in a loop awaiting the commands from the
master. Upon completion of the job, the slaves signal the master so that subsequent actions
can be initiated by the master. The slave is also allowed to communicate with other slaves
directly under the supervision of the master so that unnecessary message passing is eliminated.
The synchronization of processes is ful�lled by using blocked message sending and receiving
of MPI. The performance of this parallelized program executed in this mode on the SGI
Origin 2000 HPC system will be demonstrated in the subsequent sections for a sample three-
dimensional problem.

5. NUMERICAL RESULTS

In order to demonstrate the performance of the Godunov-projection method combined with the
overlapping grids, several test problems are numerically solved. The test problems considered
are the lid-driven square cavity �ow, uniform �ow past a cylinder and �ow past a sphere.
The motivation for this is to ensure that the basic algorithm works correctly in single as well
as overlapping grids.

5.1. Lid-driven �ow in a square cavity

Lid-driven �ow in a unit square cavity is a widely used benchmark test to verify the calcu-
lation of incompressible �ow. In this work, cavity �ows corresponding to Reynolds number
Re=3200; 5000 and 10 000 are computed. Speci�c details on the performance of the algo-
rithm, convergence, etc. and results for other Reynolds numbers, Re=100; 400 and 1000, can
be found in Reference [17]. A non-uniformly distributed grid of 64× 64 points has been used
for these calculations where the grid points are clustered along the wall boundaries. The initial
�eld is set to a stationary �ow �eld everywhere except on the lid boundary where the velocity
corresponds to the velocity of the lid motion. The �ow �elds at low Reynolds numbers are
used as the initial conditions for simulating high Reynolds numbers �ows to reduce computa-
tional costs. The computed results are shown in Figure 6, where the computed streamlines are
shown in �gures (a), (c) and (e) and the velocity pro�les along the central line of cavity are
displayed in �gures (b), (d) and (f). From the streamline plots, it is clear that four vortices,
i.e. one primary central vortex, two secondary vortices one each in the lower left, and right
corners and another secondary vortex in the upper left corner have manifested in the �ow �eld
at Reynolds number Re=3200 and 5000, and these are almost steady in nature. At Reynolds
number Re=10000, the �ow becomes more complex and drifts further from the steady state
than previous two cases. A tertiary vortex can be seen in the lower right corner in Figure 6.
These computed �ow phenomena are similar to the results reported Reference [18]¶. Further
examination is done by comparing the u component of velocity along the central vertical
line and v along the central horizontal line. This comparison is given in the right column of
Figure 6. It is noted that minor discrepancies exist at high Reynolds number. This is caused
by the coarse grids and can be remedied by re�ning the grid. (Ghia used 257× 257 grid points
for these cases.) The locations of the vortices are presented in Table I and compared with

¶Ghia et al. [18] calculated the �ow in a square cavity at the same Reynolds numbers with a �ne grids, which
have 129× 129 and 257× 257 grid points.
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Figure 6. Lid-driven square cavity �ows for Reynolds numbers Re=3200; 5000 and 10 000 on a
64× 64 grid. Figure in the left column is streamline plot and velocity pro�le along the central,

vertical and horizontal lines in the right column.
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Table I. The location of vortices of lid-driven square cavity
�ows at di�erent Reynolds numbers.

Vortex Re=3200 Re=5000 Re=10 000

Present method
PV 0:5197; 0:5444 0:5142; 0:5377 0:5132; 0:5376
BLV 0:0819; 0:1160 0:0748; 0:1321 0:0614; 0:1604
BRV 0:8182; 0:0869 0:7968; 0:0738 0:7606; 0:0603
TV 0:0523; 0:8937 0:0647; 0:9048 0:0701; 0:9064
SBR — — 0:9301; 0:0820

Ghia et al. [18]
PV 0:5165; 0:5469 0:5117; 0:5352 0:5117; 0:5333
BLV 0:0859; 0:1094 0:0703; 0:1367 0:0586; 0:1641
BRV 0:8125; 0:0859 0:8086; 0:0742 0:7656; 0:0586
TV 0:0547; 0:8984 0:0625; 0:9102 0:0703; 0:9141
SBR — — 0:9336; 0:0625

the values obtained by Ghia. In this table, PV represents the primary vortex, BLV and BRV
represent the lower left and right vortex, respectively, TV is the upper vortex and SBR refers
to the second lower right vortex. Except for the second lower right vortex, the positions of
vortices calculated by using the projection method at di�erent Reynolds numbers are in close
agreement with that obtained by Ghia. In reality, the �ows in the lid-driven square cavity
at high Reynolds number are unsteady. The di�erences that occur for the second lower right
vortex are caused by the coarse grid that is used and the computed quasi-steady �ow �eld.
It can be concluded that the results obtained by using current projection method is accurate
and are in close agreement with Ghia’s results [18] even though only a coarse grid was used
for the simulation.

5.2. Flow past a circular cylinder

Unsteady �ow past a circular cylinder is computed as a test case for this time-accurate projec-
tion method. According to Panton [19], the �ow past a circular cylinder has attached vortices
when 4¡Re¡40 (where Re, the Reynolds number, is based on the diameter of the cylin-
der). The von K�arm�an vortex street would arise when 40¡Re¡60−100 and alternate vortex
shedding in the wake of the cylinder occur when the Reynolds number is increased to about
200. Di�erent modes of vortex shedding would appear at di�erent Reynolds numbers, such as
oblique and parallel shedding mode demonstrated in experiments as shown in Reference [20].
The cylinder is located at the origin and has a unit diameter. The in�ow boundary is located 8
diameters upstream of the cylinder and the out�ow boundary is extended to 16 diameters aft
of the cylinder. An overlapping grid shown in Figure 7, which contains two component grids,
a cylindrical grid with 50× 20 grid points and a background rectangular grid with 110× 56
grid points, is generated to discretize the domain over which the computation is done. Com-
putational results of the �ow �eld corresponding to a Reynolds number of 200 for which
experimental and numerical results are available [21; 22] are obtained using the numerical
scheme. The initial condition was set by assuming the velocity everywhere to correspond to
the uniform velocity, which was also applied at the in�ow, top and bottom boundaries. The
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Figure 7. Overlapping grid for �ow past a circular cylinder.
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Figure 8. Time history plot of drag and lift coe�cients of �ow past a circular cylinder at Re=200.

out�ow boundary condition is speci�ed as @U=@n=0. Various aspects of the application of
this boundary condition at the out�ow boundary are outlined in References [23–25].
The computation shows periodic vortex shedding in the wake of cylinder. The drag and

lift forces acting on the cylinder varied according to the formation and separation of the
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Table II. Drag and lift coe�cients and Strouhal numbers
for the �ow past circular cylinder at Re=200.

CD CL St

Present 1:37± 0:04 ±0:63 0.192
Rogers �fth-order method [22] 1:23± 0:05 ±0:65 0.185

Rosenfeld et al. [31] 1:46± 0:05 ±0:69 0.211
Wille [21] — — 0.19

Figure 9. Pressure contour at an instant of �ow past a circular cylinder at Re=200.

vortices. The computed variation of lift and drag coe�cients vs time is shown in Figure 8.
The computed Strouhal number for this �ow is estimated to be 0:192. Computed values are
compared with reported values in literature and is summarized in Table II. Figure 9 shows
computed pressure contours at an instant of time. The variation of the computed streamlines
for a cycle of vortex shedding are shown in Figure 10.

5.3. Flow past a sphere

The �ow past a sphere is a three-dimensional �ow and is more computationally intensive than
any of the previous two-dimensional steady and unsteady computation. This is simulated here
to verify the performance of the parallelized three-dimensional Godunov-projection algorithm
which can be used for more complex �ow problems. As the wake of a sphere exhibits
many interesting and rich �ow structures as outlined in Reference [26], the simulation of this
problem will assess the capabilities of this algorithm in capturing these rich �ow structures and
the associated hydrodynamic forces. The �ow is axisymmetric and attached if the Reynolds
number Re¡20. As Reynolds number increases, �ow separation takes place and a cylindrical
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Plate 1. Streamlines of �ow past sphere at Re=100 on di�erent grids: (a) coarse grid;
(b) regular grid; and (c) �ne grid.
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Plate 2. Streamlines at an instant of �ow past sphere at Re=400 at di�erent viewpoints.
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Figure 10. Streamlines for �ow past a circular cylinder at Re=200 at various in-
stants during a vortex shedding cycle: (a) t=88:9261; (b) t=89:9452; (c) t=90:9643;

(d) t=91:9833; (e) t=93:0024; and (f) t=94:1186.

vortex surface would appear in the �ow �eld. When the Reynolds number is increased further,
this axisymmetric �ow would lose its stability in the range 120¡Re¡300 [27] and the vortices
will detach periodically. A description and visualization of the vortex formation associated
with �ow past spherical bodies can be found in Reference [28], where the Strouhal number of
the vortex shedding was claimed to be in the range of 0.120–0.160. Here, the �ow problem
at Reynolds numbers Re=100 and 400 are simulated using the Godunov-projection algorithm
with the CFL number set to 0.9.
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Figure 11. Overlapping grids around a sphere: (a) overlapping sub-domains around a sphere;
and (b) sphere sub-domains.

The diameter of the sphere is assumed to be unity. The computational domain extends 7.5
units upstream and 15 units downstream and corresponds to the computational domain used by
Kalro and Tezduyar [26]. An overlapping grid shown in Figure 11 is generated to discretize
the computational domain by using Ogen [15]. This overlapping grid system consists of four
component grids, namely a cylindrical domain, a rectangular domain and two patched domains
grids. The grids in the cylindrical domain serves as the background grid covering the range
and extent of the outer boundary and the grids in the rectangular domain is used to �ll up the
hole left by the cylindrical domain. The two patched spherical sub-domains embedded in the
union of box and cylindrical grids are used to construct the near-�eld grid around the sphere.
Figure 11(b) shows the boundaries of these two sub-domains, referred here as north and south
patched sub-domains at the interfacing location to form the overlapped grid structure around
the sphere. Figure 12 shows the exploded views of these two patched domains around the
sphere and from this �gure the extent of the boundaries of the computational area around
the sphere can be seen. Some redundant grid points of north patched sub-grid have been
removed so that the interpolation boundary from the south patched grid no longer forms the
interior boundaries. The singularities normally associated with grid generation around three-
dimensional bodies such as spheres, etc. have been removed by using these two patched
domain grids.
The �ow past the sphere should be axisymmetric at Reynolds number 100, and the numer-

ical simulation using the current algorithm con�rms this observation. The calculations were
executed for a su�ciently long duration at the end of which a steady axisymmetric recircu-
lation �ow structure forms and persists in the wake of sphere. The e�ect of the grid density

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:441–463



COMPUTATION OF VISCOUS INCOMPRESSIBLE FLOW 457

Figure 12. Exploded views of the grids in the patched subdomains and their interface of overlap:
(a) interpolation cells on the north placed grid; and (b) interpolation cells on the south patched grid.

on the convergence of the current numerical algorithm is considered by simulating the �ow
on three sets of overlapping grids which has di�erent number of grid cells, namely 78 400
grid cells for the coarse grid, 425 088 grid cells for the intermediate grid and 1 132 384 grid
cells for the �ne grid. The extent of the computational domain is kept the same for all the
grids and the same overlapping structure is used for all these grids. The computed streamlines
of this �ow on these three grid systems are shown in Plate 1, where the axisymmetric ring
con�guration of the recirculation zone in the wake of the sphere can be clearly seen for all
the computed �ow �elds. This is in close agreement with the structures which have been
reported by Kim and Pearlstein [27]. In these �gures, the colour used on the surface of the
sphere and the streamlines is determined by scaling with the pressure �eld. The surface grids
on the sphere are also shown in these streamline plots, where the size of spatial step length
on the three grids can be clearly seen for the three grid systems. The �ow �eld computed
by using the coarse grid is shown in Plate 1(a), and Plate 1(b) displays the �ow computed
on the intermediate grid. The computed solution on the �ne grid is shown in Plate 1(c). It
can be seen that similar �ow �elds are produced by using these three systems of overlapping
grids although the density of grid points are quite di�erent. The e�ects of grid density on the
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Figure 13. Time variation of drag coe�cient CD of �ow past sphere
at Re=100 on three di�erent grids.

convergence history of the computations on these three grids are shown in Figure 13, where
the variation of drag coe�cient, Cd, with time or number of iterations to steady-state �ow
�elds computed on di�erent grids are shown. The drag coe�cients computed on these three
systems of overlapping grids with di�erent grid densities converge after a short initial stage
when the transients have been �ushed out of the computational domain. The e�ect of the grid
size on the converged values of the steady-state drag coe�cients are shown in Figure 14,
where the x co-ordinate is the inverse of the total number of grid cells N . The computed drag
coe�cients are very close to the experimental value presented by Schlichting [29], 1.1. As the
computational grid becomes �ner and �ner, the drag coe�cient reaches a closer agreement
with the experimental data.
The �ow past sphere at Re=100 is steady. Unsteady �ow should appear when the Reynolds

number is increased further and the vortex shedding process is initiated. Compared with
this case, much more complex �ow structures can be expected in �ow at Re=400. In the
�ow past the sphere at Re=400, it is observed that the vortices are shed periodically. The
computed variation of the drag coe�cient during a short duration are shown in Figure 15. The
time-averaged drag coe�cient is estimated to be about 0:648, which compares well with the
value 0:619 presented by Kalro and Tezduyar [26]. The computed variation of the coe�cients
of side forces, (cl)y and (cl)z are shown in Figure 15. It seems that the side forces do
not oscillate periodically. However, Kalro and Tezduyar observed that the vortex surface
rotated in low frequency when he carried out a long-duration computation. This fact does
explain the variation of the side forces during this short duration. The computed Strouhal
number based on the vortex shedding frequency is about 0:14 compared to 0.131 obtained by
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Figure 14. Drag coe�cient of �ow past sphere at Re=100 on three di�erent grids.

Kalro and Tezduyar. Figure 16 shows the velocity vector and pressure contour plots in the
various streamwise planes, which are placed at angular intervals of 45◦. These plots show that
the vortex shedding is not symmetric. The back �ow region extends to about 1.5 diameters
downstream and this is in agreement with that computed by Karlo and Tezduyar [26]. The
computed streamlines of this �ow are shown in Plate 2, where the colour shows the pressure.
In order to evaluate the performance of the parallel code, the speedup and e�ciency has

been measured for the �ow past sphere at Re=100. Figure 17(a) shows the speedup vs
number of processors used in the computation and the e�ciency is shown in Figure 17(b). It
is same as in this case that the speedup increases as the number of processors is increased.
However, the variation of e�ciency is not straightforward. The speedup has a large incre-
ment when 32 slave processors are used and its e�ciency also increases. This phenomena is
unusual and it may be due to the architecture of the SGI Origin. The SGI Origin [30] applies
cache coherent non-uniform memory access (ccNUMA) architecture where a local memory
(cache) is attached to each processor. Processors also have access to the huge shared remote
memory through the dedicated scalable interconnect network. This arrangement is named as
distributed shared memory(DSM) and the cache coherence is maintained in hardware. The
number of grid cells for this computation is large. When only a limited number of proces-
sors are employed, the overlapping grid can only be divided into the same number of grid
partitions as the slave processors used and each partition has a relatively large number of
grid cells. Therefore, the data cannot be held in the cache entirely and the frequent swap
between the cache and the main memory can be expected. When more processors are used,
the partitioned grid parts become smaller in view of the increased number of grid parti-
tions. When the grid is partitioned into 32 parts, the cache is large enough for the local grid
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Figure 15. Time variation of drag and side forces acting on the sphere at Re=400.

partitions. Therefore, the swap is no longer performed commonly in which case the e�ciency
is improved greatly and the speedup also shows an increment. For the case when 42 slave
processors are used for the computation, the e�ciency dropped even though the speedup is
increased. After checking the grid partitions held by each processor, it was found that the
number of grid cells of grid partitions were di�erent. Therefore, the processors have di�erent
amount of computation. This fact con�rmed the conclusion that appropriate grid partitioning
can achieve better computational load balancing among all processors.

6. CONCLUSION

In this work, the Godunov-projection method for solving the unsteady incompressible
Navier–Stokes equations has been implemented on the overlapping grids. This scheme is
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Figure 16. Vector and pressure plots at the various streamwise planes of �ow past sphere at Re=400.

second-order accurate temporally and spatially. The Godunov procedure is incorporated to
provide a robust discretization of the convective terms for high Reynolds number �ow. The
pressure Poisson equation is solved to obtain the pressure �eld. The usage of overlapping grids
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Figure 17. Speedup (a) and e�ciency (b) of the parallel computation of �ow past a sphere.

can greatly reduce the complexity of structured grid generation. The third-order interpolation
of the �ow variables is used to couple the �ow �eld across the interface regions of the compo-
nent grids. Furthermore, the parallelization of the combination of the projection method and the
overlapping grid by partitioning the grids in a scalable and e�cient manner o�ers considerable
economy for three-dimensional �ow simulations. The benchmark �ow simulation problems that
have been solved by using this algorithm and discussed in the previous section demonstrate
the capability and the performance of the method. It can be concluded that this method can
achieve reasonable accuracy, speedup and e�ciency when used as a �ow prediction method.
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